Почему AutoML не «магия», а способ выжить в промышленном ML
Когда в компании появляется первая ML‑модель, кажется, что самое сложное выбрать алгоритм и добиться хороших метрик. Но настоящий вызов начинается позже: когда моделей становится десятки, затем сотни, а скорость бизнеса начинает требовать обновлений не раз в год, а раз в недели.
В Страховом Доме ВСК мы довольно быстро поняли: без стандартизации и автоматизации машинного обучения масштабирование превращается в хаос. Так у нас появился собственный AutoML‑фреймворк как ответ на реальные боли промышленного ML.
Читать далее