От MNIST к Transformer. Часть 2. Основы работы с памятью
Мы живем в эпоху, когда ИИ стал доступен каждому. Но за магией PyTorch скрывается колоссальная инженерная работа и сложные вычислительные процессы, которые для большинства остаются черным ящиком.
Это вторая статья из цикла От MNIST к Transformer, цель которого пошагово пройти путь от простого CUDA ядра до создания архитектуры Transformer - фундамента современных LLM моделей. Мы не будем использовать готовые высокоуровневые библиотеки. Мы будем разбирать, как все устроено под капотом, и пересобирать их ключевые механизмы своими руками на самом низком уровне. Только так можно по настоящему понять как работают LLM и что за этим стоит. В этой статье разберем основы работы с памятью и две простые математические операции с точки зрения математики, но не такие простые с точки зрения CUDA ядер.
Приготовьтесь, будет много кода на C++ и CUDA, работы с памятью и погружения в архитектуру GPU. И конечно же математика что за этим стоит. Поехали!
Читать далее